亚博安全有保障

樊海宁

2021.03.31 18:27

职称 副研究员 电话
邮箱 fhn@tsinghua.edu.cn

undefined

姓名:樊海宁

职称:副研究员

办公室:西主楼一区四层404

邮箱:fhn@tsinghua.edu.cn

教育背景

1988.9-1992.7 解放军南京通信工程亚博安全有保障计算机及指挥自动化专业获工学学士

1992.9-1996.5 解放军南京通信工程亚博安全有保障军事通信学专业获军事学硕士

1999.9-2005.1 亚博安全有保障获工学博士

社会兼职

会议程序委员会委员

International Workshop on the Arithmetic of Finite Fields: WAIFI 2010, WAIFI 2012.

研究领域

密码计算,信息安全

研究概况

主要从事有限域计算快速算法设计。有限域GF(2^n)广泛应用于密码和纠错码等领域,我们在GF(2^n)并行乘法器设计领域所做出的原创性工作在多数GF(2^n)上是目前国际同类设计方案中的唯一最好结果,例如被ISO,NIST和ANSI等列为国际标准的“椭圆曲线数字签名算法(ECDSA)”所建议的5个GF(2^n)中的4个。

2016年,美光(Micron)将我们在2005年所设计的移位多项式基乘法器应用于包括3D XPoint(Intel-Micron联合开发)在内的下一代存储芯片,以降低BCH纠错码的译码延时(“Fast Decoding ECC for Future Memories”,IEEE J-SAC)。

2023年,我们在2010年所设计的基于奇偶分裂的Overlap-free Karatsuba乘法器被用于美国NIST后量子密码(PQC)标准化过程中,以评估候选算法的硬件实现效率(High-Speed Hardware Architectures and FPGA Benchmarking of CRYSTALS-Kyber, NTRU, and Saber,IEEE TC)。

奖励与荣誉

2012 IET Information Security Premium Awards

学术成果

综述及专著章节

[1] M. Hasan and Haining Fan: 《Handbook of Finite Fields》, Ch. 16.7, “Binary extension field arithmetic for hardware implementations”,CRC press, 2013 (Compiled by 88 international contributors.)

[2] Haining Fan and M. Hasan, “A survey of some recent bit-parallel GF(2^n) multipliers,” Finite Fields and Their Applications, vol. 32, pp. 5-43, March 2015 (Invited by the “Twenty Year Anniversary Edition”.)

期刊论文

[1] Haining Fan, Simple multiplication algorithm for a class of GF(2^n); IEE Electronics Letters, vol. 32, no.7, pp.636-637, 1996.

[2] Haining Fan and Yiqi Dai, Key function of normal basis multipliers in GF(2^n); IEE Electronics Letters, vol. 38, no.23, pp. 1431-1432, Nov. 2002.

[3] Haining Fan and Yiqi Dai, Low complexity bit-parallel normal bases multipliers for GF(2^n); IEE Electronics Letters, vol. 40, no.1, pp. 24-26, Jan. 2004.

[4] Haining Fan and Yiqi Dai, Normal basis multiplication algorithm for GF(2^n); IEE Electronics Letters, vol. 40, no.18, pp. 1112-1113, Aug. 2004.

[5] Haining Fan and Yiqi Dai, Fast bit-parallel GF(2^n) multiplier for all trinomials; IEEE Transactions on Computers, vol. 54, no. 4, pp. 485-490, Apr. 2005.

[6] Haining Fan, Duo Liu and Yiqi Dai, Two Software Normal Basis Multiplication Algorithms for GF(2^n); Tsinghua Science and Technology, vol. 11, no.3, pp. 264-270, 2006.

[7] Haining Fan and M. Hasan, Relationship between GF(2^m) Montgomery and Shifted Polynomial Basis Multiplication Algorithms; IEEE Transactions on Computers, vol. 55, no. 9, pp. 1202-1206, Sept. 2006.

[8] Haining Fan and M. Hasan, Fast Bit Parallel Shifted Polynomial Basis Multipliers in GF(2^n); IEEE Transactions on Circuits & Systems I: regular papers, vol.53, no.12, pp.2606-2615, 2006.

[9] Haining Fan and M. Hasan, A New Approach to Subquadratic Space Complexity Parallel Multipliers for Extended Binary Fields; IEEE Transactions on Computers, vol. 56, no. 2, pp. 224-233, Feb. 2007.

[10] Haining Fan and M. Hasan, Comments on ‘Five, Six, and Seven-Term Karatsuba-Like Formulae’; IEEE Transactions on Computers, vol. 56, no. 5, pp. 716-717, May 2007.

[11] Haining Fan and M. Hasan, Subquadratic computational complexity schemes for extended binary field multiplication using optimal normal bases; IEEE Transactions on Computers, vol. 56, no. 10, pp. 1435-1437, Oct. 2007.

[12] Haining Fan and M. Hasan, Alternative to the Karatsuba algorithm for software implementations of GF(2^n) multiplications; IET Information security, vol. 3, no. 2, pp. 60-65, 2009.

[13] Haining Fan, Jiaguang Sun, Ming Gu and Kwok-Yan Lam,Overlap-free Karatsuba-Ofman polynomial multiplication algorithms; IET Information security, vol. 4, no. 1, pp. 8-14, 2010. (相关专利:ZL 2010 1 0279491.X 基于分治的亚二次多项式乘法器)

[14] Haining Fan, Jiaguang Sun, Ming Gu and Kwok-Yan Lam, Obtaining More Karatsuba-Like Formulae over the Binary Field; IET Information security, vol. 6, no. 1, pp. 14-19, 2012.

[15] Cheng Su and Haining Fan, Impact of Intel's new instruction sets on software implementation of GF(2)[x] multiplication; Information Processing Letters, vol. 112, pp. 497-502, 2012.

[16] Xi Xiong and Haining Fan, GF(2^n) bit-parallel squarer using generalised polynomial basis for new class of irreducible pentanomials, IET Electronics Letters,Vol. 50,No. 9,pp. 655–656,2014.

[17] Jiangtao Han and Haining Fan, GF(2^n) Shifted Polynomial Basis Multipliers Based on Subquadratic Toeplitz Matrix-Vector Product Approach for All Irreducible Pentanomials, IEEE Transactions on Computers, vol. 64, pp. 862-867, March, 2015.

[18] Yongjia Wang, Xi Xiong and Haining Fan, GF(2^n) redundant representation using matrix embedding for irreducible trinomials, International Journal of Foundations of Computer Science, vol. 27, pp. 463-478,2016.

[19] Haining Fan, A Chinese Remainder Theorem Approach to Bit-Parallel GF(2^n) Polynomial Basis Multipliers for Irreducible Trinomials, IEEE Transactions on Computers, vol. 65, no.2, pp. 343-352,2016.

[20] Jiajun Zhang, Haining Fan, Low space complexity CRT-based bit-parallel GF(2^n) polynomial basis multipliers for irreducible trinomials, Integration - the VLSI Journal, vol. 58, pp. 55-63, 2017.

[21] Haining Fan, A trace based GF(2^n) inversion algorithm, IACR Cryptology ePrint Archive 2020-482,2020.

下一篇:李琦(校内兼职)

关闭

亚博安全有保障 - (集团)股份有限公司